Hello!
The chemical reaction for the dissolving of calcium fluoride is the following:
CaF₂(s) ⇄ Ca⁺²(aq) + 2F⁻(aq)
In this reaction, and according to Le Chatelier's principle, the action that would shift this reaction away from solid calcium fluoride and towards the dissolved ions is the removing of fluoride ions.
Le Chatelier's principle states that in an equilibrium reaction, the system would shift in the opposite direction of the changes. If we remove fluoride ions from the system, it will shift towards the formation of more fluoride ions by dissolving more Calcium Fluoride to achieve equilibrium again.
Have a nice day!
2ZnS(s)+3O2(g) -> 2Zns(s) + 2SO3(g)
the above given equation is unbalanced as it contains 4 moles of sulphur in the output but in the input there are only two aoms of sulphur so to balance the equation we will write the equation as given under
balanced equation is
2ZnS(s)+3O2(g) -> 2Zn(s) + 2SO3(g)
In words:
When 2 moles of solid zinc sulfide reacts with 3 moles of oxygen gas gives 2 moles of solid zinc and 2 moles of sulphur trioxide gas.
Answer:
Explanation:
Your B-L Acid is a proton (Hydrogen, H+) donor, and your B-L base is a proton acceptor. This means that the base will take a hydrogen from your acid. NO2- is a B-L base, and you can tell it is a base by the negative charge it possesses. This means that it has a lone pair that wants to grab one of the hydrogens from NH4+, the B-L acid. In scientific words, the NO2- is a nucleophile and NH4+ is an electrophile. The result of NO2- grabbing that hydrogen from NH4+ is that NO2- becomes HNO2 (your conjugate acid) and and NH4+ becomes NH3 (you conjugate base). Basically, any time a B-L acid loses a proton, its equal product will be its conjugate base, and any time a B-L base gains a proton, its equal product will be its conjugate acid.
I hope this helped explain the concept behind Bronsted-Lowry acids and bases! Good luck with your class and please don't forget to give a positive rating! :-)
Answer:
Significant Figures
Explanation:
1) Annotation category: ...
2)RULES FOR SIGNIFICANT FIGURES.
3) All non-zero numbers ARE significant. ...
4)Zeros between two non-zero digits ARE significant. ...
5)Leading zeros are NOT significant. ...
6)Trailing zeros to the right of the decimal ARE significant. ...
7)Trailing zeros in a whole number with the decimal shown ARE significant. 8) to make you happy :) hope this helps you :)