For this question, lets apply Avagadro's law
when Pressure and temperature are constant, the volume occupied is directly proportional to the number of moles of gases.
where V-volume, n-number of moles and k - constant
Therefore at 2 instances
where V1 and n1 are for 1st instance
and V2 and n2 are for 2nd instance
therefore
V1 = 2.4 L
n1 = 3.7 mol
n2 = 3.7 + 1.6 = 5.3 mol
since more He moles are added at the 2nd instance its the sum of the moles.
V2 needs to be calculated
V2 = 2.4 x 5.3 / 3.7
= 3.4 L
Answer is 1st option 3.4 L
Explanation:
Hydrogen (H)
Helium (He)
Lithium (Li)
Beryllium (Be)
Boron (B)
Carbon (C)
Nitrogen (N)
Oxygen (O)
Fluorine (F)
Neon (Ne)
Sodium (Na)
Magnesium (Mg)
Aluminum (Al)
Silicon (Si)
Phosphorus (P)
Sulfur (S)
Chlorine (Cl)
Argon (Ar)
Potassium (K)
Calcium (Ca)
Hope this is correct and helpful
HAVE A GOOD DAY!
Answer:
Option C:- that is equal to mass of an proton.
Explanation:
Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams, which scientists define as one atomic mass unit (amu) or one Dalton. While electron has mass of 9.31 ×10⁻¹⁹.
Answer:
Approximately 10,5
Explanation:
The question is not really very specific, because it would need the percentages of those isotopes in the nature. As they are not shown, it should be the median of those two numbers.
atomic weight ≈ = 10,5
If you check a periodic table, you'll see it's actually 10,8, but that's because of the thing I told you at first (percentages missing).
Hope I could help.
The answer is (2). Heat always flows down the temperature gradient, from high temperature to low temperature. Therefore, since the person is the warmest, heat flows from the person to both the ice and the air. Additionally, since the air is warmer than the ice, heat flows from the air to the ice.