Answer:

Explanation:
For the simple pendulum problem we need to remember that:
,
where
is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where
is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:

Answer:
640 nanometer setara dengan 6.4e-7 meter
Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.
Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:
