I think it is the gas and the heat in it
They should identify the confounding variable.
Some condition that is not examined by the scientist might alter the experiment result. That condition is called confounding variable. If the method of the experiment same but result is very different, there should be unidentified confounding variable. It could be air humidity, temperature, ventilation, light, time of the year or anything that might not be seen by naked eye.
Try to redo the experiment with controlling variable as much as possible.
Answer:
The net ionic equation is as follows:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Explanation:
The reaction between Hydrocyanic acid, HCN, and sodium hydroxide is a neutralization reaction between a weak acid and a strong base.
Hydrocyanic acid being a weak acid ionizes only slightly, while sodium hydroxide being a strong base ionizes completely. The equation for the reaction is given below:
A. HCN(aq) + NaOH-(aq) ----> NaCN(aq) + H2O(l)
Since Hydrocyanic acid is written in the aqueous form as it ionizes only slightly and the ionic equation is given below:
HCN(aq) + Na+(aq)+OH-(aq) ----> Na+(aq)+CN-(aq) + H2O(l)
Na+ being a spectator ion is removed from the net ionic equation given below:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
1: viewing any chemical reaction in a laboratory
2: dangerous to look at when it burns & used in photography, fireworks, and flares
3: the product
1) HOBr stands for hypobromous acid. On reacting with water, products formed are OBr- and H3O+. Following reaction occurs during this process.
<span> HOBr + H2O </span>⇄<span> OBr- + H3O+
2) HOBr is a weak acid and have a lower value of dissociation constant (Ka ~ </span><span>2.3 X 10^–9). Hence, </span><span> large number of undissociated HOBr molecules are left in solution, when the reaction is completed/reaches equilibrium.</span>