Answer:
6.2 calories
Explanation:
Data Given:
change in temperature = 20 °C
specific heat of gold = 0.031 calories/gram °C
mass of gold = 10.0 grams
Amount of Heat = ?
Solution:
Formula used
Q = Cs.m.ΔT
Where:
Q = amount of heat
Cs = specific heat of gold = 0.031 calories/gram °C
m = mass
ΔT = Change in temperature
Put values in above equation
Q = 0.031 calories/gram °C x 10.0 g x 20 °C
Q = 6.2 calories
So option A is correct = 6.2 calories
I don't know sorry I really need point
Answer:
Check the explanation
Explanation:
When talking about our universe there are 5 d orbitals. The element of first transition series moves away from the universal principles of Hund's rule and Aufbav's principle. So in order to attain stability these elements tend to form half or full filled orbitals.
In our universe the ground state electronic configuration of sixth transition metal, Iron (Fe) : [Ar] 
and the electronic configuration of seventh transition metal, Cobalt (Co) : [Ar] 
=================================
=================================
In universe L there are seven orbitals.
Ground state electronic configuration of sixth and seven transition element.
Sixth transition metal: [Ar] ![3d^{7} 4s^1 or [X] 3d^{7} 4s^1](https://tex.z-dn.net/?f=3d%5E%7B7%7D%204s%5E1%20or%20%5BX%5D%203d%5E%7B7%7D%204s%5E1)
Seventh transition metal: [Ar] ![3d^{7} 4s^{2}or [X] 3d^{7} 4s^{2}](https://tex.z-dn.net/?f=3d%5E%7B7%7D%204s%5E%7B2%7Dor%20%5BX%5D%203d%5E%7B7%7D%204s%5E%7B2%7D)
I would say water; water is extremely polar, and this is why it can break one of the strongest bonds, ionic bonds. NaCl, as you probably know, is a salt, and dissolves in water. However, the ionic bond holding the Na+ and the Cl- is extremely strong; the boiling point of NaCl is at 1413 degrees celcius (water is at 100 degrees celcius). This means that it requires A LOT of energy to break the bond, but water is able to dissolve and break the bond very easily. It is very polar, so I would answer your question with water. And the bond connecting the H and the O is a covalent bond.