Answer:
NH3 has greater water solubility due to intermoleculate interactions
Explanation:
Hi:
If we represent the structures of NH3 and SbH3 we can see that they are similar to the naked eye, this is because N and Sb belong to the same group of the periodic table (group 15).
However, the electronegativity of N is greater than that of Sb. The NH3 molecule is polar and can form an intermolecular interaction called hydrogen bridge with water.
Sb is less electronegative than N. The SBH3 molecule forms an intermolecular interaction with water called dipole-induced dipole.
The zone with positive charge density of the water molecule (hydrogens) is oriented towards the zone with positive charge density of SBH3 (the pair of electrons not shared)
Stronger intermolecular junctions allow greater solubility of NH3 molecules.
Successes in your homework
Answer: c. balance
Explanation: Mass is the amount of matter contained in a body.
Answer:
85.34g of NH3
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Step 2:
Determination of the number of moles of NH3 produced by the reaction of 2.51 moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 2.51 moles of N2 will react to produce = (2.51 x 2)/1 = 5.02 moles of NH3.
Therefore, 5.02 moles of NH3 is produced from the reaction.
Step 3:
Conversion of 5.02 moles of NH3 to grams. This is illustrated below:
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Number of mole of NH3 = 5.02 moles
Mass of NH3 =..?
Mass = mole x molar Mass
Mass of NH3 = 5.02 x 17
Mass of NH3 = 85.34g
Therefore, 85.34g of NH3 is produced.