The number of moles in 32.5g of aluminum chloride is approximately 0.250 moles.
<u>Given</u> :
- Amount = 20 kg
- Heat energy absorbed = 237,000 J
- Temperature change = 15 °C
<u>Formula applied</u> :

- Q = absorbed heat
- m = mass
- c = specific heat capacity
- ΔT = temperature change
Let's solve for c !
⇒ 237,000 = 20 × c × 15
⇒ c = 237,000 ÷ 300
⇒ 
∴ The specific heat capacity of granite is <u>790 J kg⁻¹ K⁻¹</u>.
Answer:
40:1 is the ratio of the magenta phenolphthalein concentration to the colorless phenolphthalein concentration.
Explanation:
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[magenta(Php)]}{[Php]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bmagenta%28Php%29%5D%7D%7B%5BPhp%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of phenolphthalein = 9.40
= concentration of magenta phenolphthalein
= concentration of colorless phenolphthalein
pH = 11
Putting values in above equation, we get:
![11=9.40+\log(\frac{[magenta(Php)]}{[Php]})](https://tex.z-dn.net/?f=11%3D9.40%2B%5Clog%28%5Cfrac%7B%5Bmagenta%28Php%29%5D%7D%7B%5BPhp%5D%7D%29)
![\log(\frac{[magenta(Php)]}{[Php]})=11-9.40=1.6](https://tex.z-dn.net/?f=%5Clog%28%5Cfrac%7B%5Bmagenta%28Php%29%5D%7D%7B%5BPhp%5D%7D%29%3D11-9.40%3D1.6)
![\frac{[magenta(Php)]}{[Php]}=10^{1.6}=39.81 :1 \approx 40:1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%28Php%29%5D%7D%7B%5BPhp%5D%7D%3D10%5E%7B1.6%7D%3D39.81%20%3A1%20%5Capprox%2040%3A1)
40:1 is the ratio of the magenta phenolphthalein concentration to the colorless phenolphthalein concentration.
the equation balanced is
3 PbI4 + 4 CrCl3 → 3 PbCl4 + 4 CrI3
I believe the answer is B. Density, correct me if i'm wrong :)