Answer:
The magnitude of the acceleration of the tip of the minute hand of the clock
.
Explanation:
Given that,
Length of minute hand = 0.55 m
Length of hour hand = 0.26 m
The time taken by the minute hand to complete one revelation is

We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the magnitude of the acceleration of the tip of the minute hand of the clock
Using formula of acceleration

Put the value into the formula


Hence, The magnitude of the acceleration of the tip of the minute hand of the clock
.
Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved

now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation

![1.75 = [4.5 + 0.245]\omega](https://tex.z-dn.net/?f=1.75%20%3D%20%5B4.5%20%2B%200.245%5D%5Comega)


so the final angular speed will be 0.37 rad/s
Answer:
1 angstrom = 0.1nm
5000 angstrom = 5000/1 × 0.1nm
<h3>= 500nm</h3>

5000 angstrom = 5000 × 1 × 10^-10
<h3>= 5 × 10^-7 m</h3>
Hope this helps you
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.
Explanation:
solution: mass m = 5g = 0.005kg; extension e = 7cm = 0.07m; force f = 70 N; velocity = ?; using: work done in elastic material w = 1/2 fe = 1/2 ke2 = 1/2 mv2 - the kinetic energy of the moving stone. 1/2 fe =...