Answer:
See explanation
Step-by-step explanation:
Consider the sequence 
Rewrite it as

The points on the coordinate plane are
(see attached graph).
Since
given sequence is geometric.
164.38 = (1 x 100) + (6 x 10) + (4 x 1) + (3/10) + (8/100)
Answer:
The next three terms are 54, 162, 486
Step-by-step explanation:
Exponential sequences you multiply to find the next term
6 x 3 = 18 (to find the next term you can multiply the previous term by 3)
18 x 3 = 54
54 x 3 = 162
162 x 3 = 486
Answer:
The value of X is always 1
Answer:
The answer is


Step-by-step explanation:
We must find a solution where

Consider the Left Side:
First, to add fraction multiply each fraction on the left by it corresponding denomiator and we should get

Which equals

Add the fractions

Simplify the right side by multiplying the fraction

Set both fractions equal to each other

Since the denomiator are equal, we must set the numerator equal to each other




