Answer:
2
Step-by-step explanation:
Answer:
the amount of time until 23 pounds of salt remain in the tank is 0.088 minutes.
Step-by-step explanation:
The variation of the concentration of salt can be expressed as:

being
C1: the concentration of salt in the inflow
Qi: the flow entering the tank
C2: the concentration leaving the tank (the same concentration that is in every part of the tank at that moment)
Qo: the flow going out of the tank.
With no salt in the inflow (C1=0), the equation can be reduced to

Rearranging the equation, it becomes

Integrating both sides

It is known that the concentration at t=0 is 30 pounds in 60 gallons, so C(0) is 0.5 pounds/gallon.

The final equation for the concentration of salt at any given time is

To answer how long it will be until there are 23 pounds of salt in the tank, we can use the last equation:

A vertical stretching is the stretching of the graph away from the x-axis.
A vertical compression is the squeezing of the graph towards the x-axis.
A compression is a stretch by a factor less than 1.
For the parent function y = f(x), the vertical stretching or compression of the function is a f(x).
If | a | < 1 (a fraction between 0 and 1), then the graph is compressed vertically by a factor of a units.
If | a | > 1, then the graph is stretched vertically by a factor of a units.
For values of a that are negative, then the vertical compression or vertical stretching of the graph is followed by a reflection across the x-axis.
Thus, the equation with the widest graph is 0.3x^2.
If I understand it correctly then its complementary angle will be 115˚, because 180-65=115.