<span>ideal gas law: PV = nRT so .....</span><span> V = PV/(RT) </span>
<span>
Initial number of moles of Cl, n = 0.943*5.11/(0.08206 × 286) mol = 0.2053 moles.
</span><span>
We know the molar mass of K (potassium) = 39.0 g/mol </span>
<span>sooo....
The Initial number of moles of K = 29.0 g/(39.0 g/mol) = 0.7436 moles</span>
<span>Find the balanced equation for the reaction : </span><span>2K + Cl2 → 2KCl </span>
<span>Mole ratio of K:Cl = 2:1 </span>
<span>So after the reaction, the amount of K needed = (0.2053 mol) × 2 = 0.4106 mol which is less than 0.7436 mol </span>
<span>
This means that K is in excess but Cl completely reacts. </span>
<span> So we know the mole ratio is Cl:KCl = 1 : 2
</span>
<span>Number of moles of Cl (completely) reacted = 0.2053 mol which means the n</span><span>umber of moles of KCl formed = (0.2053 mol) × 2 = 0.4106 mol </span>
<span>Molar mass of KCl = (39.0 + 35.5) g/mol = 74.5 g/mol </span>
<span>Mass of KCl formed = 0.4106 mol * 74.5 g/mol = 30.6 g</span>
Molarity is defined as the number of moles of solute in 1 L of solution
molarity of solution to be prepared is 0.85 M
this means that there should be 0.85 mol of KBr in 1 L of solution
if 1 L contains - 0.85 mol
then 25.0 mL should contain - 0.85 mol / 1000 mL x 25.0 mL = 0.0213 mol
mass of KBr - 0.0213 mol x 119 g/mol = 2.53 g
mass of KBr that should be dissolved in 25.0 mL is 2.53 g
Answer:
please mark brainlest and it's Procedure 1: One of the products was a gas that escaped into the air.
Procedure 2: A gas from the air reacted with one of the other reactants
Explanation:
the gas ca evaporate so it would'nt be a or c and b dosent make sense.
The melting point of gallium is 85.59°F (29.77°C).
Answer:
C
Explanation:
water has the highest specific heat capacity of any liquid,as a hydrogen bond