Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.
Answer: option A. 350 K and 0.30 atm
Explanation: a gas behaves as an ideal gas at higher temperature and low pressure
Answer:
To calculate an electron configuration, divide the periodic table into sections to represent the atomic orbitals, the regions where electrons are contained. Groups one and two are the s-block, three through 12 represent the d-block, 13 to 18 are the p-block and the two rows at the bottom are the f-block.Explanation:
Given:
A compound with:
Number of carbon atoms = 9
Number of double bonds = 1
A double bond between 5th and 6th carbon
A propyl group (CH2CH2CH3) branching off the 3rd carbon from the left
Try to illustrate the given and observe the formation of the atoms. Now, follow the correct IUPAC naming system. The name of the compound is
4-propyl-1-hexene
Count from the right to the left, the double bond is between the 1st and 2nd carbon, thus, 1-hexene. The propyl branches out the 4th carbon from the right, thus 4-propyl.
<h2>Answer:</h2>
The option B is correct option. Which is release of heat and/or light energy .
<h3>Explanation:</h3>
According to the definition of exothermic reaction :
<em>An exothermic reaction is a chemical reaction that releases energy by light or heat.</em>
From definition option B (release of heat and/or light energy) indicates that an exothermic reaction has taken place.
.