Answer:
339.2K
Explanation:
Using Charles law equation;
V1/T1 = V2/T2
Where;
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
V1 = 2.97 L
V2 = 3.42 L
T1 = 21.6°C = 21.6 + 273 = 294.6K
T2 = ?
Using V1/T1 = V2/T2
2.97/294.6 = 3.42/T2
Cross multiply
2.97 × T2 = 294.6 × 3.42
2.97T2 = 1007.532
T2 = 1007.532 ÷ 2.97
T2 = 339.236
The final temperature is 339.2K
Answer:
BaSO₄
Explanation:
Let's assume we have 100 g of the compound. If that's the case we would have:
Now we <u>convert the masses of each element into moles</u>, using their <em>respective molar masses</em>:
- 58.8 g Ba ÷ 137.327 g/mol = 0.428 mol Ba
- 13.74 g S ÷ 32 g/mol = 0.429 mol S
- 27.43 g O ÷ 16 g/mol = 1.71 mol O
We <u>divide those moles by the lowest number among them</u>:
We can express those results as Ba₁S₁O₄, meaning the empirical formula is thus BaSO₄.