Answer:
increases the frequency of particle collisions
Explanation:
One factor upon which the rate of reaction depends is the surface area of reactants.
According to the collision theory, reactions occur when reactant particles having the required (activation) energy collide with each other, this collision is inelastic. However, collision of particles having energies less than the activation energy results in elastic collisions and no chemical reaction.
The more the exposed surface area of reactants, the greater the number of particles that come into contact with each other and the more the chances of frequent effective collisions that lead to reaction.
Thus, powdered zinc reacts faster with hydrochloric acid than zinc strips
Answer:
A
Explanation:
There are three states of mater; solid liquid and gas. The sold state is the difficult to compress while the gaseous state is quite easy to compress.
A gas is easily compressed because the particles in a gas are far apart from each other. A solid is difficult to compress because the particles of a solid are close together. From all the above statements, it is easily deducible that the compressibility property of a substance in a particular state of matter depends on the proximity of the particles to each other, hence the answer above.
Unlike solid matter, where particles are tightly packed and slightly vibrating, or gas, where particles go around everywhere and are extremely loose, a liquid has particles that are loosely packed but are still in slight contact with each other. Hope that's good enough
Answer:
The effective nuclear charge for a valence electron in oxygen atom: 
Explanation:
Effective nuclear charge
is the net nuclear charge experienced by the electron in a given atom. It is always less than the actual charge of the nucleus [Z], due to shielding by electrons in the inner shells.
<em>It is equal to the difference between the actual nuclear charge or the atomic number (Z) and the shielding constant (s). </em>

<u>For an oxygen atom</u>-
Electron configuration: (1s²) (2s² 2p⁴)
<em>The atomic number (actual nuclear charge): </em>Z = 8
The shielding constant (s) for a valence electron can be calculated by using the Slater's rules:
⇒ s = 5 × 0.35 + 2 × 0.85 = 1.75 + 1.7 = 3.45
<u><em>Therefore, the effective nuclear charge for a valence electron in oxygen atom is:</em></u>

<u>Therefore, the effective nuclear charge for a valence electron in oxygen atom:</u> 
<h3>Answer:</h3>
36 moles of Hydrogen
<h3>Solution:</h3>
The molecular formula of Glucose is,
C₆H₁₂O₆
As clear from molecular formula, each mole of Glucose contains 12 moles of Hydrogen atoms.
Therefore,
1 mole of C₆H₁₂O₆ contains = 12 moles of Hydrogen
So,
3.0 moles of C₆H₁₂O₆ will contain = X moles of Hydrogen
Solving for X,
X = (3.0 mol × 12 mol) ÷ 1 mol
X = 36 moles of Hydrogen