Let <em>A</em> be the amount of money that Aliya deposited in the savings account. Since <em>A</em> is half as much as money as she invested in a money market account, then the amount that she invested in the market account is <em>2A.</em>
<em />
Express the interest that Aliya earned in terms of A. Set it equal to the amount of $297.60 and then solve for <em>A</em>.
Since the savings account gives 1.9% simple interest, the total amount of interest that she will earn from the savings account is 1.9% of A, which is equal to:

Since the money market account gives 3.7% simple interest, the total amount of interest that she will earn from the money market account, is 3.7% of <em>2A</em>, which is equal to:

Add both interests in terms of A and simplify the expression:

The expression (9.3/100)*A represents the total interest after one year. Then:

Use the value of <em>A</em> to find the amount that was invested in the money market account:

Therefore, Aliya deposited 3200 in a savings account and 6400 in a money market account.
The inaccurate measurements must be similar to the other two measurements (ex; 590, 589, 599), but different from the actual volume of water. (Ex; the actual volume is let say.. 100, but you measured 50, 49, 40)
Answer:
time taken with speed 23 km/h will be 1.8 hours or 1 hour 48 minutes
Explanation:
Given:
Time is inversely proportional to the speed
mathematically,
t ∝ (1/r)
let the proportionality constant be 'k'
thus,
t = k/r
therefore, for case 1
time = 3 hr
speed = 14 km/hr
3 = k/14
also,
for case 2
let the time be = t
r = 23 km/h
thus,
we have
t = k/23
on dividing equation 2 by 1
we get

or

or
t = 1.8 hr = or 1 hour 48 minutes ( 0.8 hours × 60 minutes/hour = 48 minutes)
Answer:
The car has velocity and acceleration but is not decelerating
Explanation:
Since the car is traveling at 25 mph around the curve, it has a tangential velocity. This tangential velocity is constantly changing in direction (so the car could adapt to the curve and not moving forward in a straight line), there should be a centripetal acceleration in play here. This acceleration does not slow down the car so it's not decelerating.