If you use the equation F=ma and re-arrange it to get m = F/a, you'll get the total mass. Then you have to subtract the mass of the cart from the total mass to get the mass of the rock.
Thus, m = 6N over 2m/s^2. The total mass will then be 3kg. Subtracting 1kg from the total mass will then yield you 2kg, which is the mass of the rock. Hope this helps.
Answer:
As each mower presumably needs the same torque to start, and torque is a product of force and moment arm, the longer moment arm of 10.42 cm on Uwi's mower means lower force is required when compared to Urippe's shorter moment arm of 1.35 cm
350 rev/min = 350(2π) / 60 = 36.652 rad/s
36.652 rad/s / 0.294 s = 124.66... <u>125 rad/s²</u>
a = αR = 125(0.1042) = 12.990... <u>13 m/s²</u>
a = αR = 125(0.0135) = 1.68299... <u>1.7 m/s²</u>
I am GUESSING that we are supposed to model these mowers as a uniform disk
τ = Iα
FR = (½mr²)α
F = mr²α/2R
Urippe's pull = (3.56)(0.2041²)(124.66) / (2(0.0135)) = 702.008... <u>702 N</u>
Usi's pull = (3.56)(0.2041²)(124.66) / (2(0.1042)) = 90.9511...<u>91.0 N</u>
L = Iω = (½(3.56)(0.2041²))36.652 = 2.71771...<u>2.72 kg•m²/s down</u>
using the right hand rule
Answer:
W=76.55 miles.metric tons
Explanation:
Given that
Weight on the earth = 12 tons
So weight on the moon =12/6 = 2 tons
( because at moon g will become g/6)
As we know that

Here x= 1100 miles
F 2 tons

So

We know that
Work = F. dx


![W=-2.4\times 10^6\left[\dfrac{1}{x}\right]_{1100}^{1140}](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7Bx%7D%5Cright%5D_%7B1100%7D%5E%7B1140%7D)
![W=-2.4\times 10^6\left[\dfrac{1}{1140}-\dfrac{1}{1100}\right]](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7B1140%7D-%5Cdfrac%7B1%7D%7B1100%7D%5Cright%5D)
W=76.55 miles.metric tons
The energy stored in motion is called kinetic energy.
Answer:
1.21m
Explanation:
If two speakers are generating a frequency of 280Hz, the smallest separation distance between the speakers that will produce destructive interference at a listener standing in front of them is also known as the wavelength of the sound wave generated.
Using the expression;
Velocity v = frequency f × wavelength ¶
Given frequency = 280Hz, speed of sound v = 338m/s
Substituting this data's in the expression given to get the wavelength will give;
¶ = v/f
¶ = 338/280
¶ = 1.21m
The smallest separation between the speakers that will produce the interference is 1.21m