Answer:
By rounding up of the constant and coefficient terms, we have;
The line of best, fit is y = 1.23 + 3.46 × 10⁻²·x
Step-by-step explanation:
The table for the data on the number of movie admissions each year is presented as follows;
Year, x
Admission, y
0
1.24
2
1.26
4
1.39
6
1.47
8
1.49
10
1.57
Using a graphing calculator, we have that the line of best fit is given by the following equation;
y = 1.23047619048 + 3.45714285714 × 10⁻²·x
Which is approximately, y = 1.23 + 3.46 × 10⁻²·x
<span>Answer:
Its too long to write here, so I will just state what I did.
I let P=(2ap,ap^2) and Q=(2aq,aq^2)
But x-coordinates of P and Q differ by (2a)
So P=(2ap,ap^2) BUT Q=(2ap - 2a, aq^2)
So Q=(2a(p-1), aq^2)
which means, 2aq = 2a(p-1)
therefore, q=p-1
then I subbed that value of q in aq^2
so Q=(2a(p-1), a(p-1)^2)
and P=(2ap,ap^2)
Using these two values, I found the midpoint which was:
M=( a(2p-1), [a(2p^2 - 2p + 1)]/2 )
then x = a(2p-1)
rearranging to make p the subject
p= (x+a)/2a</span>
Answer:
43/7
Step-by-step explanation:
6 1/7
First, you need to multiply 6 by 7, then add 1
43/7
Answer:
4r-3
Step-by-step explanation:
3 fewer means subtracting 3 and 4 represents the r