1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
2 years ago
9

What is the estimated weight of three containers weighing 1.656 kg each?

Mathematics
1 answer:
Ede4ka [16]2 years ago
8 0

Answer:

5 or 4.9

i dont know tho hxkw8swlwsaiprjw9sksoqkw

You might be interested in
One more question on this test guys. please answer as fast as possible. If you do,
GaryK [48]

1. The given rectangular equation is x=2.

We substitute x=r\cos \theta.

r\cos \theta=2

Divide through by \cos \theta

r=\frac{2}{\cos \theta}

r=2}\sec \theta

\boxed{x=2\to r=2\sec \theta}

2. The given rectangular equation is:

x^2+y^2=36

This is the same as:

x^2+y^2=6^2

We use the relation r^2=x^2+y^2

This implies that:

r^2=6^2

\therefore r=6

\boxed{x^2+y^2=36\to r=6}

3. The given rectangular equation is:

x^2+y^2=2y

This is the same as:

We use the relation r^2=x^2+y^2 and y=r\sin \theta

This implies that:

r^2=2r\sin \theta

Divide through by r

r=2\sin \theta

\boxed{x^2+y^2=2y\to r=2\sin \theta}

4. We have x=\sqrt{3}y

We substitute y=r\sin \theta and x=r\cos \theta

r\cos \theta=r\sin \theta\sqrt{3}

This implies that;

\tan \theta=\frac{\sqrt{3}}{3}

\theta=\frac{\pi}{6}

\boxed{x=\sqrt{3}y\to \theta=\frac{\pi}{6}}

5. We have x=y

We substitute y=r\sin \theta and x=r\cos \theta

r\cos \theta=r\sin \theta

This implies that;

\tan \theta=1

\theta=\frac{\pi}{4}

\boxed{x=y\to \theta=\frac{\pi}{4}}

6 0
3 years ago
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
Somebody help me?! Finding an angle measure given a triangle and parallel lines.
balandron [24]

Answer:

x=78

Step-by-step explanation:

the sum of all angles in a triangle=180

180-59=129

y>x

70+59=129

180-129=51

129-51=78

x=78

8 0
3 years ago
The function A = 15x - x2, where x is the width in yards, gives the area A of a llama pen in square yards. Make a table using 1/
Mnenie [13.5K]

Answer:

The width which gives the greatest area is 7.5 yd

Step-by-step explanation:

This is an application of differential calculus. Given the area as a function of the width, we simply need to differentiate the function with respect to x and equate to zero which yields; 15-2x=0 since the slope of the graph is zero at the turning points. Solving for x yields, x=7.5 which indeed maximizes the area of the pen

6 0
3 years ago
9 * 9 ^ 2 x + 3 equal 27 * 3 ^ x - 2​
Amiraneli [1.4K]

3^2*3^2 (2x+3)=3^2+4x+6=3^4x+8

3^3*3^x-2=3^x+1

4x+8=x+1

3x=-7

x=-7/3

6 0
3 years ago
Other questions:
  • What is the value of cosθ given that (−2, −3) is a point on the terminal side of θ ?
    5·1 answer
  • 20,24,28,32,... you can help me the way you do.​
    13·1 answer
  • The measure of central angle XYZ is 1.25 radians.
    15·2 answers
  • Sketch the region enclosed by the lines X=0, X=6, Y=2, and Y=6.
    8·2 answers
  • What is the answer to 1/4(12+x)+1/2(x-6)
    14·1 answer
  • Pls Help!! I'll MARK YOU BRAINLIEST but please explain​
    12·1 answer
  • PLEASE I NEED HELP!!!!
    13·1 answer
  • I’m like actually failing
    15·2 answers
  • Factor each expression completely6x^2+x-2
    8·1 answer
  • The tree in Miguel's backyard is 7.1 m high How high is it in centimeters? Be sure to include the correct unit in your answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!