Answer:

Explanation:
To find the weight (W) of the pond contents first we need to use the following equation:
(1)
Where m the mass and g is the gravity
Also, we have that the mass is:
(2)
Where ρ is the density and V the volume
We cand calculate the volume as follows:
(3)
Where L is the length, w is the wide and d is the depth
By entering equation (2) and (3) into (1) we have:

Therefore, the weight of the pond is 6.65x10⁶ lbf.
I hope it helps you!
Hey there :)
<em>Q</em><em>u</em><em>e</em><em>s</em><em>t</em><em>i</em><em>o</em><em>n</em><em>:</em><em> </em><em>How many km are in 5.6mm? </em>
<em>=</em><em>></em><em>5.6x10</em><em>^</em><em>3 </em>
<em>=</em><em>></em><em>5.6x10</em><em>^</em><em>-6 </em>
<em>=</em><em>></em><em>5.6x10</em><em>^</em><em>-3 </em>
<em>=</em><em>></em><em> </em><em>5.6x10</em><em>^</em><em>6</em>
<em>A</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em>-</em>

<em>E</em><em>x</em><em>p</em><em>l</em><em>a</em><em>n</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em>:</em><em>-</em>
By using the formula-

As 1 with 6 zeros, we convert it into exponential form.

As this above value is fraction type, we can do the reciprocal, thus, the exponent gets a negative value.

Now combine with given question.

Answer:
Phosphorus is more electronegative than hydrogen
Explanation:
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons towards itself thereby making a molecule to be polar. The Pauling scale is the most commonly used to measure electronegativity. Fluorine (the most electronegative element) is assigned a value of 4.0 on the Pauling's scale, and values range down to caesium and francium which are the least electronegative elements.
Electronegativity increases from left to right across the periodic table (across the period) hence, phosphorus is far more electronegative than hydrogen. Being more electronegative than hydrogen, phosphorus attracts the bonding electron pair of the P-H bond closer to itself than hydrogen. Since the electrons of the bond are closer to phosphorus than hydrogen, the phosphorus atom acquires a partial negative charge while the hydrogen atom acquires a partial positive charge.
Group 12 Elements have two valence electrons while Group 13 Elements have three valence electrons.
Number of valence electrons tend to determine factors like reactivity. So elements with different number of valence electrons will have different properties.
That is why G12 and G13 have different properties
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>