<span>We can solve this problem by assuming that the decay of
cyclopropane follows a 1st order rate of reaction. So that the
equation for decay follows the expression:</span>
A = Ao e^(- k t)
Where,
A = amount remaining at
time t = unknown (what to solve for) <span>
Ao = amount at time zero = 0.00560
M </span><span>
<span>k = rate constant
t = time = 1.50 hours or 5400 s </span></span>
The rate constant should
be given in the problem which I think you forgot to include. For the sake of
calculation, I will assume a rate constant which I found in other sources:
k = 5.29× 10^–4 s–1 (plug in the correct k value)
<span>Plugging in the values
in the 1st equation:</span>
A = 0.00560 M * e^(-5.29 × 10^–4 s–1 * 5400 s )
A = 3.218 <span>× 10^–4 M (simplify
as necessary)</span>
Chemical is the answer to the question, but nuclear could also be a valid one since it is nearly impossible to reverse that.
The correct answer would be, "<span>D. beta-galactosidase".
As all the others are made in different organisms.
Hoped I helped.</span>
The number of atoms in one mole of any substance is measured by Avogadro's number. The value of Avogadro's number is 6.023 x 10 ^23. It is named after scientist Avogadro who proposed this number. 12 grams of carbon-12 represents 1 mole of carbon-12. For this reason, the number of atoms present in 1 mole of any substance is 6.023 x 10 ^23. Therefore, the number of atoms present in 1 mole carbon-12 is 6.023 x 10^23.
(Answer) This unit is the number of atoms in 12 grams of carbon-12 and known as Avogadro's number.