Answer:
Explanation:
In Pre-AP Chemistry, the development of models to explain their macroscopic observations is a primary means through which students develop an understanding of the molecular world.
You will be forced to think and apply concepts to new situations, and even derive your own theories from application. This is excellent preparation for the higher levels of thinking required in college.
Chemistry, the science that deals with the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that is released or absorbed during these processes.
Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune
Answer:
The CO2 Extinguisher Cannisters contain carbon dioxide in liquid form, and when the extinguisher is let off the liquid is released into the air neutralising the oxygen that the fire is feeding on, disabling the fires ability to spread.
Because K and Cl have such a large disparity in their electronegativities, KCl is a bipolar ionic molecule.
<h3>What exactly are polar and nonpolar bonds?</h3>
Polar covalent bonds develop when the distribution of electrons among atoms is uneven, whereas nonpolar side chains develop when the distribution of electrons is more even. The reason for the unequal sharing of electrons is because the atoms receiving them have various electronegativities.
<h3>How are polar bonds created?</h3>
Whenever a single pair of electrons is not shared equally, a polar molecule bond is created. This is caused by the electronegativity difference between the two elements. An unit of h as well as an unit of bromine share a pair of electrons, but not evenly.
To know more about polar bond visit:
brainly.com/question/10777799
#SPJ4
Answer:
ΔG° = -533.64 kJ
Explanation:
Let's consider the following reaction.
Hg₂Cl₂(s) ⇄ Hg₂²⁺(aq) + 2 Cl⁻(aq)
The standard Gibbs free energy (ΔG°) can be calculated using the following expression:
ΔG° = ∑np × ΔG°f(products) - ∑nr × ΔG°f(reactants)
where,
ni are the moles of reactants and products
ΔG°f(i) are the standard Gibbs free energies of formation of reactants and products
ΔG° = 1 mol × ΔG°f(Hg₂²⁺) + 2 mol × ΔG°f(Cl⁻) - 1 mol × ΔG°f(Hg₂Cl₂)
ΔG° = 1 mol × 148.85 kJ/mol + 2 mol × (-182.43 kJ/mol) - 1 mol × (-317.63 kJ/mol)
ΔG° = -533.64 kJ