Galileo discovered during his inclined-plane experiments that a ball rolling down an incline and onto a horizontal surface would roll indefinitely.
Answer:
The kinetic energy of the particle will be 12U₀
Explanation:
Given that,
A particle is launched from point B with an initial velocity and reaches point A having gained U₀ joules of kinetic energy.
Constant force = 12F
According to question,
The kinetic energy is
....(I)
Constant force = 12F
A resistive force field is now set up ,
Resistive force is given by,

When the particle moves from point B to point A then,
We need to calculate the kinetic energy
Using formula for kinetic energy

Put the value of 

Now, from equation (I)

Hence, The kinetic energy of the particle will be 12U₀.
Answer
a) For the rock






b)
for maximum range




c) The value of θ is the same on every planet as g divides out.
Normal force for the rock because that makes an object stable at its position.
static friction because micro-welts hold its particle on its position so it doesn't change in position by a potential energy. Gravity makes it stay on the ground because its force attraction between an object and the earth.
Hope this helps <span />
Answer a would be correct since velocity is a vector and has a magnitude and a direction. In this case v₁ = - v₂.