There are many processes to get nuclear energy. Nuclear energy is basically energy from an atom. For example fission is where the nucleus of an atom ( typically radioactive atoms ) gets split then energy is released ( typically heat). And in radioactive decay radiation is released from an radioactive atom. Hope this helps
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:
