Answer:
Acceleration, 
Explanation:
Given that,
Mass of the planet Krypton, 
Radius of the planet Krypton, 
Value of gravitational constant, 
To find,
The acceleration of an object in free fall near the surface of Krypton.
Solution,
The relation for the acceleration of the object is given by the below formula as :



So, the value of acceleration of an object in free fall near the surface of Krypton is 
Answer:
Sound waves are longitudinal in nature.
Explanation:
There are many types of waves like transverse, longitudinal, electromagnetic wave etc.
Sound waves are longitudinal in nature. In longitudinal type of wave, the medium particles moves parallel to the propagation of the wave. This type of waves move in the form of compression and rarefaction.
In compression, the particle density at a point is very less while in rarefaction, the particle density at a point is very high.
So, the correct option is (b) "longitudinal wave".
Answer:
get a tutor or something to help man
Explanation:
Answer:
exercise can lower levels
Answer:
T2=336K
Explanation:
Clausius-Clapeyron equation is used to determine the vapour pressure at different temperatures:
where:
In(P2/P1) = ΔvapH/R(1/T1 - 1/T2)
p1 and p2 are the vapour pressures at temperatures
T1 and T2
ΔvapH = the enthalpy of vaporization of the liquid
R = the Universal Gas Constant
p1=p1, T1=307K
p2=3.50p1; T2=?
ΔvapH=37.51kJ/mol=37510J/mol
R=8.314J.K^-1moL^-1
In(3.50P1/P1)= (37510J/mol)/(8.314J.K^-1)*(1/307 - 1/T2)
P1 and P1 cancelled out:
In(3.50)=4511.667(T2 - 307/307T2)
1.253=14.696(T2 - 307/T2)
1.253=(14.696T2) - (14.696*307)/T2
1.253T2=14.696T2 - 4511.672
Therefore,
4511.672=14.696T2 - 1.253T2
4511.672=13.443T2
So therefore, T2=4511.672/13.443=335.61
Approximately, T2=336K