Answer:
275.04
Step-by-step explanation:
76.4 x 3.6 = 275.04
Answer:
70-79
Step-by-step explanation:
since there is more data or a bigger block and that is what mode is the mode would be the one that shows up the most in the data set.
You owed someone 20 dollars at 4 different times, you owe them 80 dollars in total
If you divide by a decimal, you are breaking apart 1 into multiple pieces and so you are trying to find how many of that size piece will fit into 5. For example if you divide by .5 (point five), there are 2 point fives in 1 so there are 10 point fives in 5. The quotient is larger.
I hope you got that...
Simultaneous equations can be solved using inverse matrix operation.
The complete steps of Jacob's solution are:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
We have:


Calculate the determinant of ![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)



So, the inverse matrix becomes
![A = \frac{1}{14}\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)
Replace the first column with
to calculate the value of x
![x = \frac{1}{14}\left[\begin{array}{cc}2&1\\-22&3\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C-22%263%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Replace the second column with
to calculate the value of y
![y = \frac{1}{14}\left[\begin{array}{cc}4&2\\-2&-22\end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%262%5C%5C-2%26-22%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Hence, the complete process is:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
Read more about matrices at:
brainly.com/question/11367104