Check the 1st 2nd 3rd and 4th boxes
Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.
Answer: 
The following vectors have been given: 
The angle between these two vectors can be found by:



