1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
4 years ago
10

Use the definition of scalar product, a overscript right-arrow endscripts times b overscript right-arrow endscripts = ab cos θ,

and the fact that a overscript right-arrow endscripts times b overscript right-arrow endscripts = axbx + ayby + azbz to calculate the angle between the two vectors given by a overscript right-arrow endscripts equals 3.0 i overscript ̂ endscripts plus 3.0 j overscript ̂ endscripts plus 3.0 k overscript ̂ endscripts and b overscript right-arrow endscripts equals 5.0 i overscript ̂ endscripts plus 7.0 j overscript ̂ endscripts plus 6.0 k overscript ̂ endscripts.
Physics
1 answer:
makkiz [27]4 years ago
7 0

Answer: \theta=cos^{-1}0.991=7.69^o

The following vectors have been given: \vec{a}=3.0\widehat{i}+3.0\widehat{j}+3.0\widehat{k}\\ \vec{b}=5.0\widehat{i}+7.0\widehat{j}+6.0\widehat{k}

The angle between these two vectors can be found by:

cos\theta=\frac{\vec{a}.\vec{b}}{||\vec{a}|| ||\vec{b}||}\\
||\vec{a}=\sqrt{a_x^2+a_y^2+a_z^2}

\vec{a}.\vec{b}=a_xb_x+a_yb_y+a_zb_z\\ \vec{a}.\vec{b}=3\times5+3\times7+3\times6=15+21+18=54

||\vec{a}||=\sqrt{3^2+3^2+3^2}=\sqrt{27}\\ ||\vec{b}||=\sqrt{5^2+7^2+6^2}=\sqrt{110}

cos\theta=\frac{54}{\sqrt{27}\times\sqrt{110}}\\=0.991\\ \Rightarrow \theta=cos^{-1}0.991=7.69^o

You might be interested in
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
3 years ago
A semi truck has a velocity of 28m/s when it comes to a stop over 342m. What is the acceleration of the truck?​
Viefleur [7K]
Acceleration=
Velocity Final - Velocity Initial
————————————————-
Distance

Vf =0m/s because truck came to complete stop
Vi=28m/s
D=342m

0-28
——— =28.1m/s^2
342
6 0
3 years ago
15. Write down your height in feet and inches):
Tanya [424]

Answer:

example 5foot 5in

a)65

b)165.1

c) 1.83

Explanation:

a) multiply the amount of feet by 12. thats 60. then add the extra 5 inches. 65 inches in total.

b) multiply your previous answer by 2.54. (there are 2.54 centimeters for every inch) the answer is 165.1

c) a yard is three feet. divide 5foot 5 by 3.

3 0
3 years ago
Find a vector that has the same direction as −2, 4, 6 but has length 6.
amid [387]

We are givem vector < −2, 4, 6 >

First we would find norm of given vector.

In order words norm is the length of given vector.

Length of given vector ||v|| = || −2, 4, 6 || = \sqrt{(-2)^2+(4)^2+(6)^2}

||v|| = \sqrt{4+16+36}

=\sqrt{56}=2\sqrt{14}

Now, we need to find a vector in the same direction as given vector but length is 6.

So, dividing 6 by the length of given vector.

We get \frac{6}{2\sqrt{14}}=\frac{3}{\sqrt{14}}

Multiplying this value by given vector, we get

\frac{3}{\sqrt{14}} =

4 0
4 years ago
A container is filled with liquid the depth of the liquid is 60 CM if exertingc in pressure is 2000pa. calculator the density of
riadik2000 [5.3K]

Answer:

The density of the liquid is 340.136 kg/m³

Explanation:

Given;

depth of liquid in the container, h = 60 cm = 0.6 m

pressure of the liquid, P = 2000 Pa = 2000 N/m²

The pressure of the liquid is calculated as ;

P = ρgh

where;

ρ is density of the liquid

g is acceleration due to gravity = 9.8 m/s²

h is depth of the liquid

Make the density (ρ) the subject of the formula;

\rho = \frac{P}{gh} \\\\\rho = \frac{2000}{9.8 \times 0.6}\\\\\rho = 340.136 \ kg/m^3

Therefore, the density of the liquid is 340.136 kg/m³

8 0
3 years ago
Other questions:
  • Find the minimum acceleration attained on the interval 0&lt;=t&lt;=4 by the particale whos velocity is given by v(t)=t^2-4t^2-3t
    8·1 answer
  • A(n)_____________<br> studies physical components and characteristics of celestial objects.
    14·1 answer
  • If questions asked in a research study to do not accurately relate to the subject or construct being studied, the study’s ______
    13·1 answer
  • a crane lifts a 75 kg mass at a height of 8m. calculate the gravitational potential energy gained by the mass (g= 10N)
    11·1 answer
  • What is the magnification of a real image if the image is 15.0 cm from a lens and the object is 60.0 cm from the lens?
    11·2 answers
  • What is equall to E=MC​
    10·2 answers
  • I need help <br> With this
    6·1 answer
  • Please help me.............................
    5·1 answer
  • A textbook is sitting at rest on a desk. Compared to the magnitude of the force of the textbook on the desk, how
    14·1 answer
  • What secondary color is made by mixing red and green in the rgb additive-color scheme for light?.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!