Answer:
1:4
Explanation:
The formula for calculating kinetic energy is:

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!
Answer:
v = 79.2 m/s
Solution:
As per the question:
Mass of the object, m = 250 g = 0.250 kg
Angle, 
Coefficient of kinetic friction, 
Mass attached to the string, m = 0.200 kg
Distance, d = 30 cm = 0.03 m
Now,
The tension in the string is given by:
(1)
Also
T = m(g + a)
Thus eqn (1) can be written as:





Now, the speed is given by the third eqn of motion with initial velocity being zero:

where
u = initial velocity = 0
Thus


It's most likely the combination of a bucket and the wheel.
Answer:
(a) 
(b) The charge inside the shell is placed at the center of the sphere and negatively charged.
Explanation:
Gauss’ Law can be used to determine the system.

This is the net charge inside the sphere which causes the Electric field at the surface of the shell. Since the E-field is constant over the shell, then this charge is at the center and negatively charged because the E-field is radially inward.
The negative charge at the center attracts the same amount of positive charge at the surface of the shell.
Answer:
Earth pulls the sun towards itself with a force equal to the ratio of the mass of the sun to the mass of Earth