Answer:
Explanation:
We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .
∫ E ds = q / ε
Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so
∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .
This also represents total flux coming out of the charge q on all sides .
This is equal to q / ε where ε is a constant called permittivity which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .
If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .
It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors
1 ) charge q and
2 ) the permittivity of medium ε around .
Answer:
the time of motion of the ball is 6.89 ms.
Explanation:
Given;
angular speed, ω = 38 rad/s
angular distance, θ = 15 degrees
Angular distance in radian;

Time of motion is calculated as;

Therefore, the time of motion of the ball is 6.89 ms.
Answer:
option C
Explanation:
given,
Q = +3.2 x 10⁻¹⁹ C
E = 5.0 X 10⁵ V/m
B = 0.80 T
ion's acceleration is zero
when acceleration is zero the magnitude of both the forces becomes equal.
q E = q V B
v = 
v= 
v = 6.25 × 10⁵ m/s ≈ 6.3 × 10⁵ m/s
hence, the correct answer is option C
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
No, speed is not a vector. it is scalar.
because it doesn't need direction but need magnitude.