I would say mass, and weight.
Answer:
C) 6 m/s
Explanation:
Given that
m₁=5000 kg
The initial velocity of 5000 kg car =u₁
m₂=10,000 kg
The initial velocity of 10000 kg car =u₂ = 0 m/s
After collision the final speed of the both car,v = 2 m/s
There is no any external force on the system that is why linear momentum will be conserved.
Linear momentum P = m v
m₁u₁ + m₂u₂ = (m₂ + m₁) v
5000 x u₁ + 10000 x 0 = (5000 + 10000) x 2
5000 x u₁ = 15000 x 2
5 x u₁ = 15 x 2
u₁ = 6 m/s
Therefore the answer is C.
C) 6 m/s
If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4
First you need to find the initial x component which is 13.02. After that you plug it into the 3rd formula on the AP physics formula sheet. Then rearrange it into the quadratic formula and solve for time. The answer should be 4.1 seconds.