1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
15

Mars was once similar to Earth in that

Physics
1 answer:
Nataly_w [17]3 years ago
6 0
B. liquid water flowed on its surface
You might be interested in
A ranger in a national park is driving at 56 km/h when a deer jumps onto the road 65 m ahead of the vehicle. After a reaction ti
vagabundo [1.1K]

Answer:

 t = 1.58 s

Explanation:

given,

Speed of ranger, v = 56 km/h

                            v = 56 x 0.278 = 15.57 m/s

distance, d = 65 m

deceleration,a = 3 m/s²

reaction time = ?

using stopping distance formula

d = v. t + \dfrac{v^2}{2a}

t = \dfrac{d}{v} -\dfrac{v}{2a}

t is the reaction time

t = \dfrac{65}{15.57} -\dfrac{15.57}{2\times 3}

 t = 1.58 s

hence, the reaction time of the ranger is equal to 1.58 s.

3 0
3 years ago
How fast (in rpm) must a centrifuge rotate if a particle 7.50 cm from the axis of rotation is to experience an acceleration of 1
Andreas93 [3]

Explanation:

Below is an attachment containing the solution.

7 0
3 years ago
Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The long
nordsb [41]

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

R = \dfrac{\rho L }{A}

where;

A = πr²

R = \dfrac{\rho L }{\pi r ^2}

For the shorter cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{ 4 \rho L }{\pi \ D   ^2}

For the longer cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{32\rho L }{\pi \ (4 D)   ^2}

R = \dfrac{2\rho L }{\pi \ (D)   ^2}

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D   ^2}}{ \dfrac{2\rho L }{\pi \ (D)   ^2}}

\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D   ^2}}* { \dfrac  {\pi \ (D)   ^2} {2\rho L}}

\dfrac{R_s}{R_L} =2

{R_s}=2{R_L}

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

7 0
2 years ago
Technician A says that if the opposite DTC can be set, the problem is the component itself. Technician B says that if the opposi
Fiesta28 [93]

Answer:Both are correct

Explanation:

The opposite DTC also comprises of the wiring or ground. If the opposite DTC can be set it is the components that is faulty and if otherwise it is still the components that is faulty

5 0
3 years ago
A container with volume 1.64 L is initially evacuated. Then it is filled with 0.226 g of N2N
vaieri [72.5K]

Answer:

0.015 atm

Explanation:

The pressure of the gas can be calculated using Ideal Gas Law:

p = \frac{nRT}{V}

<u>Where:</u>

n: is the number of moles of the gas

R: is the gas constant = 0.082 L*atm/(K*mol)

V: is the volume of the container = 1.64 L

T: is the temperature

We need to find the number of moles and the temperature. The number of moles is:

n = \frac{m}{M}

<u>Where:</u>

M: is the molar mass of the N₂ = 14.007 g/mol*2 = 28.014 g/mol

m: is the mass of the gas = 0.226 g

n = \frac{0.226 g}{28.014 g/mol} = 8.07 \cdot 10^{-3} moles

Now, the temperature can be found using the following equation:

v_{rms} = \sqrt{\frac{3RT}{M}}    

<u>Where:</u>

R: is the gas constant = 0.082 L*atm/K*mol = 8.314 J/K*mol

v_{rms}: is the root-mean-square speed of the gas = 182 m/s

By solving the above equation for T, we have:

T = \frac{v_{rms}^{2}*M}{3R} = \frac{(182 m/s)^{2}*28.014 \cdot 10^{-3} Kg/mol}{3*8.314 J K^{-1}mol^{-1}} = 37.20 K        

Finally, we can find the pressure of the gas:

p = \frac{nRT}{V} = \frac{8.07 \cdot 10^{-3} mol*0.082 L*atm* K^{-1}*mol^{-1}*37.20 K}{1.64 L} = 0.015 atm

Therefore, the pressure of the gas is 0.015 atm.

I hope it helps you!

8 0
3 years ago
Other questions:
  • A total solar eclipse is visible from
    10·2 answers
  • 2. What is stroboscopic motion? -​
    7·1 answer
  • How to calculate displacement in physics?
    12·2 answers
  • Vector has a magnitude of 4.40 m and is directed east. Vector has a magnitude of 3.40 m and is directed 39.0° west of north. Wha
    9·1 answer
  • Which of these processes describes the effect Earth's atmosphere has on Earth's hydrosphere?
    9·1 answer
  • The membrane that surrounds a certain type of living cell has a surface area of 5.1 x 10-9 m2 and a thickness of 1.4 x 10-8 m.
    6·1 answer
  • A high pitch always corresponds to
    6·1 answer
  • 1. In a particular experiment to study the photoelectric effect, the frequency of the incident light and the temperature of the
    9·1 answer
  • When a speeding truck hits a stationary car, the car is deformed and heat is generated. What can you say about the kinetic energ
    10·1 answer
  • A boat is stationary at 12 meters away from a dock. The boat then begins to move toward the dock with
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!