<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
<em>✔ We have: KE = PE (potential energy) </em>
<em>PE = m x g x h </em>
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1

The mass m1 is therefore 4 times greater than that of the stone of mass m2.
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
The correct answer is a
Explanation:
At projectile launch speeds are
X axis vₓ = v₀ = cte
Y axis
= v_{oy} –gt
The moment is defined as
p = mv
For the x axis
pₓ = mvₓ = m v₀ₓ
As the speed is constant the moment is constant
For the y axis
p_{y} = m v_{y} = m (v_{oy} –gt) = m v_{oy} - m (gt)
Speed changes over time, so the moment also changes over time
Let's examine the answer
i True
ii False. The moment changes with time
The correct answer is a
Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>