The relative molecular mass of the gas : 64 g/mol
<h3>Further explanation</h3>
Given
Helium rate = 4x an unknown gas
Required
The relative molecular mass of the gas
Solution
Graham's Law

r₁=4 x r₂
r₁ = Helium rate
r₂ = unknown gas rate
M₁= relative molecular mass of Helium = 4 g/mol
M₂ = relative molecular mass of the gas
Input the value :

Answer:
- Absolute zero is - 459.67 °F
Explanation:
<u>1) Convert absolute zero to celsius:</u>
- 0 K = - 273.15°C ( this is per definition of the scale)
<u>2) Convert - 273.15°C to Fahrenheit:</u>
- T (°F) = T (°C) × 1.8 + 32 (this is the conversion equation=
- T (°F) = - 273.15 × 1.8 + 32 = - 459.67 °F ← answer
The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL
hope it helps ..............
<span>B. the He nucleus C.the He electrons D.the He quarks</span>