32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
<span>i think its Uranium Dating </span>
The formula for water is H2O so there would have to be two Hyrdogens and one oxygen. Therefore it would be 4g of Hydrogen and 16g of Oxygen leaving you with 20g.
The answer is D.
Hope this helps :) ~
The rate of chemical reactions generally happen <em>faster</em> when the temperature is raised.
This happens because the reactant's molecules move faster when the temperature is raised. The molecules start to bounce around more, increasing the chance for the reaction to happen, or to increase the speed at which the reaction occurs. Hope this helped.