Answer:
Ksp = [ Cu+² ] [ OH-] ²
molar mass Cu(oH )2 ==> M= 63.546 (1) + 16 (2) + 1 (2) = 97.546 g/mol
Ksp = [ Cu+² ] [ OH-] ²
Ksp [ cu (OH)2 ] = 2.2 × 10-²⁰
|__________|___<u>Cu</u><u>+</u><u>²</u><u> </u>__|_<u>2</u><u>OH</u><u>-</u>____|
|<u>Initial concentration(M</u>)|___<u>0</u>__|_<u>0</u>______|
<u>|Change in concentration(M)</u>|_<u>+S</u><u> </u>|__<u>+2S</u>__|
|<u>Equilibrium concentration(M)|</u><u>_S</u><u> </u><u>_</u><u>|</u><u>2S___</u><u>|</u>
Ksp = [ Cu+² ] [ OH-] ²
2.2 ×10-²⁰ = (S)(2S)²= 4S³
![s = \sqrt[3]{ \frac{2.2 \times {10}^{ - 20} }{4} } = 1.8 \times {10}^{ - 7}](https://tex.z-dn.net/?f=s%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B2.2%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2020%7D%20%7D%7B4%7D%20%7D%20%20%3D%201.8%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%207%7D%20)
S = 1.8 × 10-⁷ M
The molar solubility of Cu(OH)2 is 1.8 × 10-⁷ M
Solubility of Cu (OH)2 =

<h3>
Solubility of Cu (OH)2 = 1.75428 × 10 -⁵ g/ L</h3>
I hope I helped you^_^
Answer:
Evaporation occurs because among the molecules near the surface of the liquid there are always some with enough heat energy to overcome the cohesion of their neighbors and escape. At higher temperatures the number of energetic molecules is greater, and evaporation is more rapid.
Answer:
6.34917360^25g
Explanation:
It's been a while since I've done this type of problem so I'm not making any promises that its right hahaha, but I hope it helps anyway. Please let me know whether I'm right or not!
A solid formed from liquid reactants chemical reactions is called a precipitate.
Both carbon and lead belong to Group IV elements, and thus they have the same number of valence electrons.
<span>In
each of the other options, the two elements belong to different groups,
and thus they do NOT have the same number of valence electrons.
I hope this helped you, please tell me if I am correct or not <3
</span>