Answer:
8:10
Explanation:
The coefficients of a balanced chemical equation give us the mole ratios. The coefficient of carbon dioxide here is 8 and water is 10.
Answer:
0.628 M.
Explanation:
In order to solve this problem we need to keep in mind the<em> definition of molarity</em>:
- Molarity = moles / liters
We are given both the <em>number of moles and the volume of solution</em>, meaning we can now proceed to <u>calculate the molarity</u>:
- Molarity = 0.220 mol / 0.350 L
This problem is providing us with the mass of hydrochloric acid and the volume of solution and asks for the pH of the resulting solution, which turns out to be 1.477.
<h3>pH calculations</h3>
In chemistry, one can calculate the pH of a solution by firstly obtaining its molarity as the division of the moles of solute by the liters of solution, so in this case for HCl we have:

Next, due to the fact that hydrochloric acid is a strong acid, we realize its concentration is nearly the same to the released hydrogen ions to the solution upon ionization. Thereby, the resulting pH is:

Which conserves as much decimals as significant figures in the molarity.
Learn more about pH calculations: brainly.com/question/1195974
Answer: Some signs of a chemical change are a change in color and the formation of bubbles. The five conditions of chemical change: color chage, formation of a precipitate, formation of a gas, odor change, temperature change.
An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways