Answer:
V = 0.0327 L.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the liters of C3H6O by the definition of density. We can tell the density of this substance as that of acetone (0.784 g/mL) and therefore calculate the liters as shown below:

Regards!
Answer:
compound, but I could be wrong
Answer:
The next high tide will happen at 6 pm.
Explanation:
The rotation of the Earth and the translation movement of the Moon (ie the Moon's movement around the Earth), in addition to the gravitational force, contribute to the formation of the tides. The high tide will occur on the face of the Earth which is facing / facing the Moon; the low tide will occur on the faces that are forming approximately an angle of 90 ° with respect to the Moon.
There are usually two periods of high tide and two periods of low tide over a day. The interval between high tide and low tide is approximately 6 hours.
Besides the gravitational force exerted by the Moon, the tide is also influenced by the gravitational force that the Sun exerts on the Earth. The influence of the Sun is smaller due to its distance, but it can also be noticed depending on the phase of the Moon.
4Li + O₂ = 2Li₂O
Li : Li₂O = 4 : 2 = 2 : 1
2 : 1
x : 4
x=4*2/1=8 mol
D) 8
Based on Beer-Lambert's Law,
A = εcl ------(1)
where A = absorbance
ε = molar absorptivity
c = concentration
l = path length
Step 1: Calculate the concentration of the diluted Fe3+ standard
Use:
V1M1 = V2M2
M2 = V1M1/V2 = 10 ml*6.35*10⁻⁴M/55 ml = 1.154*10⁻⁴ M
Step 2 : Calculate the concentration of the sample solution
Based on equation (1) we have:
A(Fe3+) = ε(1.154*10⁻⁴)(1)
A(sample) = ε(C)(4.4)
It is given that the absorbances match under the given path length conditions, i.e.
ε(1.154*10⁻⁴)(1) = ε(C)(4.4)
C = 0.262*10⁻⁴ M
This is the concentration of Fe3+ in 100 ml of well water sample
Step 3: Calculate the concentration of Fe3+ in the original sample
Use V1M1 = V2M2
M1 = V2M2/V1 = 100 ml * 0.262*10⁻⁴ M/35 ml = 7.49*10⁻⁵M
Ans: Concentration of F3+ in the well water sample is 7.49*10⁻⁵M