Answer:
ΔS> 0 means Letter A
Explanation:
Processes that involve an increase in entropy of the system (ΔS > 0) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:
\displaystyle \Delta {S}_{\text{univ}}=\Delta {S}_{\text{sys}}+\Delta {S}_{\text{surr}}
Answer:
3.2×10^-3 mol
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
The question gives you the volume in mL, so to convert "mL" to "L" you need to divide by 1000. (6.70mL/ 1000L)= 0.0067L.
Now you can plug the numbers into the equation. 0.480M= n/ 0.0067L), multiply (0.480M×0.0067L)= 0.003216 mol. The scientific notation is 3.2×10^-3, 10^-3 because you move the decimal back three times and 3.2 because there are 2 sig figs.
Answer:
plum pudding model .
Explanation:
the electrons were 'like plums embedded in a pudding'. Also called the Raisin Bread Model.
You can determine the number of electrons by valence electrons
<span>According to Mendeleyev-Klapeyron’s equation
pV = nRT,
where p = 160 atm V = 12 R -constant 0.0821 & T = 298 in Kelvin
Using given data, we can determine the amount of Helium gas:
n = pV/RT = (160â™12)/(0,0821â™298) = 78,48 (mol)
For atmospheric pressure (1 atm) and the same amount we can calculate the volume of tank, using previous equation:
V = nRT/p = (78,48â™0,0821â™298)/1 = 1920 (liters)
V = 1920 liters
Thus Answer is 1920 liters</span>