A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
Lol what???? i don’t understand
Answer:
a = 0m/s²
Explanation:
Average acceleration = (change in velocity)/(time it takes). Since the car's change in velocity is zero, its acceleration is zero.
Answer:
See the answers below.
Explanation:
We will solve this problem by calculating each part separately.
A 500 W hair dyer is used to dry hair for 6 minutes a day for 3 days.
Energy can be calculated by multiplying the value of the power of the equipment by the amount of time of use.
![500 [W]*[\frac{6min}{1day} ]*[\frac{1day}{24hr} ]*[\frac{1hr}{60min} ]=2.083 [W]](https://tex.z-dn.net/?f=500%20%5BW%5D%2A%5B%5Cfrac%7B6min%7D%7B1day%7D%20%5D%2A%5B%5Cfrac%7B1day%7D%7B24hr%7D%20%5D%2A%5B%5Cfrac%7B1hr%7D%7B60min%7D%20%5D%3D2.083%20%5BW%5D)
The cots of electricity is 5.6 cents per kWh. How much would it cost to operate the laptop for 24 hours a day for one week?
We know that the power of the latop is 75 [W], then we can calculate the cost, multiplying the value of the power by the value of the cost by the time of use of the computer.
![0.075[kW]*5.6[\frac{cents}{kw*h}}]*[\frac{24hr}{1day}]*[1week]*[\frac{7days}{1week} ]=70.56 [cents]](https://tex.z-dn.net/?f=0.075%5BkW%5D%2A5.6%5B%5Cfrac%7Bcents%7D%7Bkw%2Ah%7D%7D%5D%2A%5B%5Cfrac%7B24hr%7D%7B1day%7D%5D%2A%5B1week%5D%2A%5B%5Cfrac%7B7days%7D%7B1week%7D%20%5D%3D70.56%20%5Bcents%5D)
A toaster oven is 85% efficient. It uses 1200 J of energy. How much thermal energy is it producing?
Efficiency is defined as the relationship between the energy obtained on the energy delivered. Almost always the energy delivered is greater than the energy obtained (first law of thermodynamics).
Therefore.
![Effic = E_{obtained}/E_{delivered}\\0.85=E_{obtained}/1200\\E_{obtained}=1020[J]](https://tex.z-dn.net/?f=Effic%20%3D%20E_%7Bobtained%7D%2FE_%7Bdelivered%7D%5C%5C0.85%3DE_%7Bobtained%7D%2F1200%5C%5CE_%7Bobtained%7D%3D1020%5BJ%5D)