The answer:
the full question is as follow:
<span>A Texas rancher wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as A, B, and C in Figure below , where A = 4.90 km and θC = 15°. He then correctly calculates the length and orientation of the fourth side D. What is the magnitude and direction of vector D?
As shown in the figure,
A + B + C + D = 0, so to find the </span>magnitude and direction of vector D, we should follow the following method:
D = 0 - (A + B + C) ,
let W = - (A + B + C), so the magnitude and direction of vector D is the same of the vector W characteristics
Magnitude
A + B + C = <span> (4.90cos7.5 - 2.48sin16 - 3.02cos15)I</span>
<span>+ (-4.9sin7.5 + 2.48cos16 + 3.02sin15)J
</span>= 1.25I +2.53J
the magnitude of W= abs value of (A + B + C) = sqrt (1.25² + 2.53²)
= 2.82
the direction of D can be found by using Dx and Dy value
we know that tan<span>θo = Dx / Dy = 1.25 / 2.53 =0.49
</span>tanθo =0.49 it implies θo = arctan 0.49 = 26.02°
direction is 26.02°
Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s
Answer:
Meter
Explanation:
I'd say meters, cause it's the SI unit of length,
which is a Derived Quantity.