to be franc i really think the answer is B
Answer:
distance between object and image = 18.9 cm
Explanation:
given data
radius of curvature = 18 cm
focal length = 1/2 radius of curvature
magnification = 40%
to find out
distance between object and image
solution
we know lens formula that is
1/f = 1/v + 1/u ....................1
here f = 18 /2 and v and u is object and image distance
and we know m = 40% = 0.40
so 0.40 = -v / u
so here v = - 0.40 u
so from equation 1
1/f = 1/v + 1/u
2/18 = - 1/0.40u + 1/u
u = -13.5 cm ..................2
and
v = -0.40 (- 13.5)
v = 5.4 cm ......................3
so from equation 2 and 3
distance between object and image = 5.4 + 13.5
distance between object and image = 18.9 cm
<span>Creating plasma can be dangerous because of the high amount of ENERGY needed to create it.</span>
Answer:
ε = 2 V/cm
Explanation:
To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:
ε = ΔV / L
Where:
ε: Hole mobility inside the bar
ΔV: voltage applied in the bar
L: Length of the bar
We already have the voltage and the length so replacing in the above expression we have:
ε = 2 V / 1 cm
<h2>
ε = 2 V/cm</h2><h2>
</h2>
The data of the speed can be used for further calculations, but in this part its not necessary.
Hope this helps
<span>It takes heat to make something evaporate, so it takes heat from your arm. Alcohol easily evaporates at room temperature, so it feels cool. This is also why you feel cool when getting out of the pool. The water on your skin evaporates.
</span>