Answer:
Tension in the chains - In a chain drive, technically, you have a closed-chain (which has no end) going around 2 pulley or gears; looking closely you have 2 parallel chains going in opposite direction. If kept in horizontal direction, the one below the other is the slack side and the other the tight side. The tension on the upper or tight side is more than the slack side. So you need to keep in mind to keep your chain drive tight so that there is no loss or rotation or lags.
Sizes of the pulley/gear - The chain will be warped around a pair of pulley or gear. The sizes of these pulley/gear will also determine the efficiency of the chain drive (consider one big and one small)
Number of pulley/gear - If the number of pulley/gear is more and chain wrapped on it with little complexity will result in decrease in efficiency because of extra tension.
Length of the chain drive - You cannot have much too long chain drive. It will make your slack side more heavy because the end are further away. You have to apply more power and possibilities of lag increases decreasing efficiency. In an ideal situation, this won't happen, but this world isn't ideal.
Friction between chains & pulley/gear - If you have studied gears (involving its teeth), you will come to know that there is friction offered on the two meeting surfaces.
Angle of contact - This would have been explained better with a diagram. Although, if you are familiar with the terms you won't have difficulty understanding. Angle of contact is the angle the chain forms with the pulley/gear at the point of contact with the center of the pulley. The angle of contact should not be too small, or else the things will be slippery.
Explanation:
Calcium has 2 valence electrons
The average rate at which the cable does work is 294,000 J/s.
The given parameters:
- <em>mass, m = 3000 kg</em>
- <em>height, h = 200 m</em>
- <em>time of motion, t = 20 s</em>
The average rate at which the cable does work is calculated as follows;
Thus, the average rate at which the cable does work is 294,000 J/s.
Learn more about energy and power here: brainly.com/question/13387946
Answer:
The new Coulomb force is q₁q₂/9πε₀r²
Explanation
The coulomb force between the two charges q₁ and q₂ at a distance r in air is given by F = q₁q₂/4πε₀r².
Now, let us assume the material of dielectric constant κ = 9 is placed between them on the side of the q₁ charge. The value of its effective charge is now q₃ = q₁/κ at a distance of d = r/2 from the q₂ charge.
Since we have air between q₂ and q₃, the coulomb force between them is
F' = q₂q₃/4πε₀d²
= q₂(q₁/κ)/4πε₀(r/2)²
= 4q₂q₁/κ4πε₀r²
= 4/κ(q₂q₁/4πε₀r²)
= 4/9 × (q₂q₁/4πε₀r²)
= q₁q₂/9πε₀r²
So, the new Coulomb force is q₁q₂/9πε₀r²
1) they are attracting because if you look at the arrows they’re all pointing the same way.
2) if the magnet was turned around they would do the opposite and not attract ( this is called repulsion)
3) magnetic pole
4)magnet
5) magnetic force
6) magnetism
Hope this helps