the answer is thermal.......
Answer:
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Explanation:
Mass of silver to be precipitated on ecah spoon = 0.500 g
Number of silver spoons = 250
Total mass of silver = 250 × 0.500 g = 125 g

Moles of AgCN = n = 
Volume of AgCN solution =V
Molarity of the AgCN = 2.50 M

(1 L = 1000 mL)
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Limiting reactant in this experiment would be Magnesium since it will run out first
We can skip option B and D because NaCl is salt and H₂SO₄ is a strong acid.
Neutralization reactions are those reactions in which acid and base react to form salt and water.
As water being amphoteric in nature can react with HCl as follow,
HCl + H₂O ⇆ H₃O⁺ + OH⁻
In this case no salt is formed, so we can skip this option.
Ammonia being a weak base can abstract proton from HCl as follow,
HCl + NH₃ → NH₄Cl
Ammonium Chloride is a salt. So, among all four options, Option-C is the correct answer.
1/2 - 3/7 = 7/14 - 6/14 = 1/14