N an experiment, suppose that the wings of fruit flies were clipped short for fifty generations. The fifty-first generation emerged with normal-length wings. This observation would tend to disprove the idea that evolution is based on
a. inheritance of natural variations
b. inheritance of acquired characteristics
c. natural selection
d. survival of the fittest
Inheritance of acquired characteristics. Thus, option "B" is correct.
<h3 /><h3>What is inheritance of acquired characteristics?</h3>
For fifty generations wings of fruit flies were clipped. Hence they acquired this trait in their lifetime and not genetically. If acquired characteristics were capable of passing on to next generation, 50 generations would have been enough to inculcate this clipped wing trait in fruit flies. Despite it, the fifty-first generation did not have clipped wings.
Hence evolution can not occur without genetic variation. A character simply acquired in a lifetime does not create a difference in germ cells and hence is not enough to be passed on to next generation or cause evolution
To learn more about genetic variation click here:
brainly.com/question/848479
#SPJ1
<span>This is the condition under which he would classify them as belonging to different species - the two salamanders cannot mate to produce a fertile offspring. If these two lizards belonged to the same species, they would normally be able to breed and give birth to a fertile new "child." However, given that they are not of the same species, they cannot do such a thing, which is why this scientist classified them that way.</span>
Answer:
Mitosis occurs in somatic cells; this means that it takes place in all types of cells that are not involved in the production of gametes. Prior to each mitotic division, a copy of every chromosome is created; thus, following division, a complete set of chromosomes is found in the nucleus of each new cell. Indeed, apart from random mutations, each successive duplicate cell will have the same genetic composition as its parent, due to the inheritance of the same chromosome set and similar biological environment. This works well for replacing damaged tissue or for growth and expansion from an embryonic state. Because the genes contained in the duplicate chromosomes are transferred to each successive cellular generation, all mitotic progeny are genetically similar. However, there are exceptions. For example, there are genetic variations that arise in clonal species, such as bacteria, due to spontaneous mutations during mitotic division. Furthermore, chromosomes are sometimes replicated multiple times without any accompanying cell division. This occurs in the cells of Drosophila larvae salivary glands, for example, where there is a high metabolic demand. The chromosomes there are called polytene chromosomes, and they are extremely large compared to chromosomes in other Drosophila cells. These chromosomes replicate by undergoing the initial phases of mitosis without any cytokinesis (Figure 2). Therefore, the same cell contains thick arrangements of duplicate chromosomes side by side, which look like strands of very thick rope. Scientists believe that these chromosomes are hyper-replicated to allow for the rapid and copious production of certain proteins that help larval growth and metamorphosis
Explanation:
hope this helped!