Answer:350.92 KJ/kg
Explanation:
Given the process is reversible adiabatic i.e it is isentropic



From steam table

For isentropic process 
at 


Therefore Work output of the turbine per unit mass of steam is =
=3317.03-2966.11
=350.92 KJ/kg
We can use kinematics here if we assume a constant acceleration (not realistic, but they want a single value answer, so it's implied). We know final velocity, vf, is 1.0 m/s, and we cover a distance, d, of 0.47mm or 0.00047 m (1m = 1000mm for conversion). We also can assume that the flea's initial velocity, vi, is 0 at the beginning of its jump. Using the equation vf^2 = vi^2 + 2ad, we can solve for our acceleration, a. Like so: a = (vf^2 - vi^2)/2d = (1.0^2 - 0^2)/(2*0.00047) = 1,064 m/s^2, not bad for a flea!
Answer:the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward.
Explanation:
When a ball is tossed vertically upwards, it reaches its maximum point. This maximum point is known as the maximum height of the ball. At this maximum height, its velocity is zero, its acceleration is directed downwards and the force of gravity acting in the ball is directed downwards towards the earth.
Answer:
D. Ted expanded more power.
Explanation:
Given the following data;
For Ted.
Force = 10N
Height = 1.5m
Time = 1 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/1
Power = 15 Watts.
For Johnny.
Force = 10N
Height = 1.5m
Time = 2 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/2
Power = 7.5 Watts
Therefore, from the calculations we can deduce and conclude that Ted expanded more power.
Answer:
tyygggghgtyhyrdfgyyyhjjillbxsrfvgygvnjj
Explanation:
cffczhxucuxoyitxohvojcdivbjv ohxc