Answer:
- 1.07 ft
Explanation:
V1 = (-5, 7, 2)
V2 = (3, 1, 2)
Projection of v1 along v2, we use the following formula
=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}
So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4
The magnitude of vector V2 is given by
= 
So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft
Thus, the projection of V1 along V2 is - 1.07 ft.
so we need to find the direction of v2
Answer:
The 10 kg rock has more inertia than the other two rocks.
Explanation
Answer:
The maximum no. of electrons- 
Solution:
As per the question:
Maximum rate of transfer of charge, I = 1.0 C/s
Time, t = 1.0 h = 3600 s
Rate of transfer of charge is current, I
Also,

Q = ne
where
n = no. of electrons
Q = charge in coulomb
I = current
Thus
Q = It
Thus the charge flow in 1. 0 h:

Maximum number of electrons, n is given by:

where
e = charge on an electron = 
Thus

Answer: 2.37N
Explanation:
According to coulombs law which states that the force of attraction (F) between two charges (q1 and q2) is directly proportional to the product of their charges and inversely proportional to the square of the distance (r) between them. Mathematically,
F = kq1q2/r²
For the first two charges that are sitting 1.5 m apart with a force of 3 N between them, we have
3 = kq1q2/1.5²
3 = kq1q2/2.25
Kq1q2= 6.75... (1)
If the charges are now moved farther apart 2.25 m and one of the charges is increased by a factor of 4. The formula becomes
F2 = k(4q1)q2/2.25² (q1 has been increased by factor of 4)
k(4q1)q2 = 5.06F2 ... (2)
Dividing 2 by 1 we have
k(4q1)q2/kq1q2 = 5.06F2/3
4 = 5.06F2/3
5.06F2 = 12
F2= 12/5.06
F2 = 2.37N
Therefore the magnitude of the new force between the two charges is 2.37N