1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Otrada [13]
3 years ago
5

If f(x) = (1/8)(8^x), what is f(3)?

Mathematics
2 answers:
faust18 [17]3 years ago
5 0

Answer:

f(3)=64

Step-by-step explanation:

f(3)=(1/8)(8 cubed)

f(3)= 8 to the negative one times 8 cubed

f(3)= 8 squared

f(3)=64

Crank3 years ago
4 0

Answer:

f(3) = 64

Step-by-step explanation:

In this question, you would plug in "3" to "x" and solve.

Solve:

f(3) = (1/8)(8³)

f(3) = (1/8)(8·8·8)

f(3) = (1/8)(512)

f(3) = 512/8

Simplify.

f(3) = 64

Your final answer would be f(3) = 64

You might be interested in
Help with proofs please
alexandr402 [8]

Answer:

D. Subtraction Property of Equality

Step-by-step explanation:

Hope it helps.

8 0
2 years ago
I HAVE A CYLINDER AND cone WITH THE
Vlad1618 [11]

Answer:

99 in³

Step-by-step explanation:

Let the radius and height of each be r and h in. respectively.

Write an equation for the volume of cone.

Volume of cone= ⅓πr²h

⅓πr²h= 33

Multiply both sides by 3:

πr²h= 99

Volume of cylinder= πr²h

We have found the value of πr²h previously, which is 99.

Thus, the volume of the cylinder is 99 in³.

6 0
2 years ago
Can someone please explain to me how to tell if a number it's prime or not
slavikrds [6]

Answer:

A prime number is a number that can only be divided by 1 and itself.

3 0
3 years ago
Read 2 more answers
A farmer fills his field proportionately with soybeans and corn. Last year he planted 200 acres of corn and 50 acres of soybeans
malfutka [58]

Answer:

Part A)  Is a directly proportional

Part B) The constant of proportionality is k=0.25

Part C) The equation is y=0.25x

Part D) 62.5  acres of soybeans

Step-by-step explanation:

Part A) Are the number of acres of corn and the number of acres of soybeans directly proportional or inversely proportional?

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form y/x=k

Let

x-----> the number of acres of corn

y---->  the number of acres of soybeans

so

y/x=k  

if the number of acres of corn increases then the number of acres of soybeans increases

if the number of acres of corn decreases then the number of acres of soybeans decreases

therefore

The relationship is a directly proportional

Part B) What is the constant of proportionality?

we have that

For x=200, y=50

substitute

y/x=k

k=50/200

k=0.25

Part C) Let x equal the number of acres of corn and y equal the number of acres of soybeans. Write an equation to show this relationship.

The linear equation that represent the direct variation is equal to

y/x=k

we have

k=0.25

substitute

y/x=0.25

y=0.25x

Part D) How many acres of soybeans can the farmer plant this year if he plants 250 acres of corn?

For x=250

Find the value of y

substitute in the linear equation the value of x and solve for y

y=0.25(250)=62.5 -----> acres of soybeans

7 0
3 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Other questions:
  • 34. A MasterCard statement shows a balance of $510 at 13.9% compounded monthly. What monthly payment will pay off this debt in 1
    10·1 answer
  • Yea i’m confused so like help?
    12·2 answers
  • Which of the following is equivalent to 34?<br> A) 7<br> B) 12<br> C) 64<br> D) 81
    8·1 answer
  • Can someone help me out (image bellow)
    7·1 answer
  • Help asap i will give brainliest
    8·2 answers
  • Hurry guys help0.04x61=
    7·2 answers
  • Use the graph above to determine which of the following ordered pairs is in quadrant II.
    5·1 answer
  • What is the result of adding two or more numbers?
    13·2 answers
  • If you wanted to repay as little money as possible after graduation from college, which of these is NOT a good option?
    6·2 answers
  • A large box of jelly beans weighs 96.58 lb the jelly beans are evenly divided into 22 bags what is the weight in pounds of the j
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!