Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
![Keq = \frac{[C]^c [D]^d}{[A]^a [B]^b}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%20%5BB%5D%5Eb%7D)
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
![Keq = \frac{[H3O^+]^1 [HCO3^-]^1}{[H2CO3]^1 [H2O]^1}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%5E%2B%5D%5E1%20%5BHCO3%5E-%5D%5E1%7D%7B%5BH2CO3%5D%5E1%20%5BH2O%5D%5E1%7D)
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Therefore, Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
The tea was no longer hot or (brewed) so the 5th didn’t dissolve like the others because the tea was hot or warm enough anymore it cooled down. So the sugar won’t dissolve no more.
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the
value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility
Answer:
Your answer is triglycerides. Hope this helps.
Answer:
4.65 g x 1 mol/4.0026 g/mol = 1.162 mol helium
Explanation: