The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
- The first law of thermodynamics is a similar version of the law of conservation of energy where the energy can neither be created nor be destroyed, it can be transformed from one form to the other.
- It also defines that the work is done and heat flowing into the system is due to the change in internal energy. The sum of all energy including kinetic and potential energy except the displaced energy to the surrounding is known as internal energy.
- ΔU represents the change in internal energy of the system, Q represents the net heat transferred into the system, and W represents the net work done by the system. So +ve Q adds energy to the system and =ve W takes energy from the system. Thus ΔU=Q−W.
Answer : The value of work done by an ideal gas is, 37.9 J
Explanation :
Formula used :
Expansion work = External pressure of gas × Volume of gas
Expansion work = 1.50 atm × 0.25 L
Expansion work = 0.375 L.atm
Conversion used : (1 L.atm = 101.3 J)
Expansion work = 0.375 × 101.3 = 37.9 J
Therefore, the value of work done by an ideal gas is, 37.9 J
Answer:
Argon
Explanation:
It has more electron than chlorine
Hey there!
Molar mass C2H6O = 46.0684 g/mol
Number of moles:
n = mass of solute / molar mass
n = 70.6 / 46.0684
n = 1.532 moles
Therefore:
M = number of moles / volume ( L )
M = 1.532 / 2.25
= 0.680 M
Hope that helps!
During a scientific study a hypotheses is generally modified or discarded
so for first blank the answer is hypotheses
Now in case of phlogiston theory it was assumed that when a substance catches fire it evolve certain substances known as phlogiston which was later on discarded as there is no such particle. Infact a substane undergoing oxidation may gain weight
Hence in second blank the answer is new evidence didn’t support it,