A, B, and C are insoluble in water
Explanation:
The chemical reaction given in the question is as follows -
MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)
NO₃⁻ (aq) + 4H⁺ (aq) + 3e⁻ → NO (g) + 2H₂O (l)
As we know , the value for reduction potential are -
Mn²⁺ = + 1.51 V
NO₃⁻ = +0.96 V
From , the data given above , the value of the reduction potential of NO₃⁻ is less than the reduction potential of Mn²⁺ .
Hence ,
NO₃⁻ can not oxidize Mn²⁺ .
Answer: D
Explanation:
A reducing agent is a species that reduces other compounds, and is thereby oxidized. The whole compound becomes the reducing agent. In other words, of a compound is oxidized, then they are the reducing agent. On the other hand, if the compound is reduced, it is an ozidizing agent.
Since we have established that a reducing agent is the compound being oxidized, we know that A is not our answer. An oxidized compound is losing electrons. Choice A states exactly this.
For B, this is true as we have established this already.
C is also correct. Since a reducing agent loses electrons, it becomes more positive. This makes the oxidation number increase.
D would be our correct answer. It is actually a good oxidizing agent is a metal in a high oxidation state, such as Mn⁷⁺.
<h3>What is spectrometric method?</h3>
- A technique called spectrophotometry uses light intensity measurements as a beam of light travels through a sample solution to determine how much a chemical compound absorbs light.
- Every chemical either absorbs or transmits light across a specific spectrum of wavelengths, according to the fundamental principle.
- There are two main techniques used among the various forms of spectrophotometry:
- ultraviolet-visible range spectrophotometry, which examines the reflectance of certain spectra,
- and absorption spectrophotometry, which examines the absorption of radiation and particular spectra of light.
- Applications of spectrophotometry are useful for determining how well gases, liquids, and solids transmit, reflect, and absorb light.
Learn more about spectrometric method here:
brainly.com/question/18339003
#SPJ4