Answer:
The data item is 
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 400 and a standard deviation of 60.
This means that 
z=3
We have to find X when Z = 3. So




The data item is 
Answer:
sAy yOu aRe mY bAkA
Step-by-step explanation:
ty for the points <3
Answer:
f(g(x)) = 4x² + 16x + 13
Step-by-step explanation:
Given the composition of functions f(g(x)), for which f(x) = 4x + 5, and g(x) = x² + 4x + 2.
<h3><u>Definitions:</u></h3>
- The <u>polynomial in standard form</u> has terms that are arranged by <em>descending</em> order of degree.
- In the <u>composition of function</u><em> f </em>with function <em>g</em><em>, </em>which is alternatively expressed as <em>f </em>° <em>g,</em> is defined as (<em>f </em> ° <em>g</em>)(x) = f(g(x)).
In evaluating composition of functions, the first step is to evaluate the inner function, g(x). Then, we must use the derived value from g(x) as an input into f(x).
<h3><u>Solution:</u></h3>
Since we are not provided with any input values to evaluate the given composition of functions, we can express the given functions as follows:
f(x) = 4x + 5
g(x) = x² + 4x + 2
f(g(x)) = 4(x² + 4x + 2) + 5
Next, distribute 4 into the parenthesis:
f(g(x)) = 4x² + 16x + 8 + 5
Combine constants:
f(g(x)) = 4x² + 16x + 13
Therefore, f(g(x)) as a polynomial in <em>x</em> that is written in standard form is: 4x² + 16x + 13.
Answer:
Second point (-5/2, -7/2)
First point (3/2, 17/2)
Step-by-step explanation:
We have two equations, and we want to know at wich poin are equal. Hence, we have a system of equations and the solution is nothing more that the point (x,y) where those functions intercepts.
4x2+ 7x -11=y
3x+4=y
Lets use substitute method
4x2+7x-11=3x+4
This can be re arrange as the following eq:
4x2+4x-15=0
A quadratic equation, its solution can be obtained using the below eq.

where a=4, b=4, c=-15.
Remember, the quadratic equation as a +/- sign, meaning that you will obtain one answer using the + operator and other using the - operator.
By doing the above, we have x=-5/2 and x=3/2
By using x=3/2 in equation of line (3x+4=y) we have y=17/2
First point (3/2, 17/2)
By using x=-5/2 in equation of line (3x+4=y) we have y= -7/2
Second point (-5/2, -7/2)
Those points are the ones where the line and the parabola intercept.