It is 4nhh3 that is the correct answer
Dissociation of Pb₃(PO₄)₂ is;
Pb₃(PO₄)₂(s) ⇆ 3Pb²⁺(aq) + 2PO₄³⁻(aq)
initial - -
change -X +3X +2X
Equilibrium 3X 2X
Ksp = [Pb²⁺(aq)]³ [PO₄³⁻(aq)]²
1.0 x 10⁻⁵⁴ = (3X)³ (2X)²
1.0 x 10⁻⁵⁴ = 108X⁵
X = 6.21 x 10⁻¹² M
Hence the molar solubility of Pb₃(PO₄)₂ is 6.21 x 10⁻¹² M.
The different is that the galvanic cell converts chemical energy into the electrical energy and the electrolytic cell coverts electrical energy into chemical energy
The characteristic of the compound you are referring is essential to where on the functional groups it belong. Furthermore, the basic functional groups among the hydrocarbons are: alkane, alkene, alkyne, benzene, and others that basically has a hydrogen atom and a carbon atom.