Answer:
the water concentration at equilibrium is
⇒ [ H2O(g) ] = 0.0510 mol/L
Explanation:
- CH4(g) + H2O(g) ↔ CO(g) + 3H2(g)
∴ Kc = ( [ CO(g) ] * [ H2 ]³ ) / ( [ CH4(g) ] * [ H2O(g) ] ) = 0,30
⇒ [ CO(g) ] = 0.206 mol / 0.778 L = 0.2648 mol/L
⇒ [ H2(g) ] = 0.187 mol / 0.778 L = 0.2404 mol/L
⇒ [ CH4(g) ] = 0.187 mol / 0.778 L = 0.2404 mol/L
replacing in Kc:
⇒ ((0.2648) * (0.2404)³) / ([ H2O(g) ] * 0.2404 ) = 0.30
⇒ 0.0721 [ H2O(g) ] = 3.679 E-3
⇒ [ H2O(g) ] = 0.0510 mol/L
The gases that get released form bubbles in the solution
<span>The best reason I can think of for why we believe that air is a mixture is that freezing air slowly yields different liquids at different temperatures. Liquid nitrogen has a different boiling point than liquid oxygen. They also freeze at different temperatures. If air were only 1 compound, then air in its entirety would have a single boiling point and a single freezing point. </span>
Pretty much, if I were going to separate small solid particles, I could use like a piece of paper. I used some type of piece of paper when I was trying to separate some particles during science.
Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.